ipcwswitch: An R package for inverse probability of censoring weighting with an application to switches in clinical trials.
Clicks: 278
ID: 13620
2019
In randomized clinical trials (RCT), the analysis is based on the intent-to-treat principle to avoid any selection bias in the constitution of groups. However, estimates of overall survival can be biased when significant crossover occurs because the separation of randomized groups is lost. To handle these switches, the inverse probability of censoring weighting (IPCW) method has been proposed; however, it is still poorly used in RCT, notably because of its complex implementation. In particular, for time-to-event outcomes, it can be difficult to format data, especially when time-dependent covariates have to be managed, with different measurement times between patients. This paper aims to present the R package ipcwswitch with some guidance for the analysis of the treatment effect on survival in a hypothetical setting where all patients would have continued to take the randomization treatment. After a brief recall of the key principles of the IPCW method, each step of the implementation is described using a toy example. The guidelines are illustrated in a case study that aimed at evaluating the benefit of therapy based on tumour molecular profiling for advanced cancers, SHIVA01.
Reference Key |
graffo2019ipcwswitchcomputers
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Grafféo, Nathalie;Latouche, Aurélien;Le Tourneau, Christophe;Chevret, Sylvie; |
Journal | Computers in biology and medicine |
Year | 2019 |
DOI | S0010-4825(19)30208-2 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.