modeling mode choice behavior incorporating household and individual sociodemographics and travel attributes based on rough sets theory

Clicks: 196
ID: 146989
2014
Most traditional mode choice models are based on the principle of random utility maximization derived from econometric theory. Alternatively, mode choice modeling can be regarded as a pattern recognition problem reflected from the explanatory variables of determining the choices between alternatives. The paper applies the knowledge discovery technique of rough sets theory to model travel mode choices incorporating household and individual sociodemographics and travel information, and to identify the significance of each attribute. The study uses the detailed travel diary survey data of Changxing county which contains information on both household and individual travel behaviors for model estimation and evaluation. The knowledge is presented in the form of easily understood IF-THEN statements or rules which reveal how each attribute influences mode choice behavior. These rules are then used to predict travel mode choices from information held about previously unseen individuals and the classification performance is assessed. The rough sets model shows high robustness and good predictive ability. The most significant condition attributes identified to determine travel mode choices are gender, distance, household annual income, and occupation. Comparative evaluation with the MNL model also proves that the rough sets model gives superior prediction accuracy and coverage on travel mode choice modeling.
Reference Key
cheng2014computationalmodeling Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Long Cheng;Xuewu Chen;Ming Wei;Jingxian Wu;Xianyao Hou
Journal Organic Chemistry Frontiers
Year 2014
DOI 10.1155/2014/560919
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.