resolution and energy dissipation characteristics of implicit les and explicit filtering models for compressible turbulence
Clicks: 205
ID: 161170
2017
Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i) an implicit or numerical large eddy simulation (ILES) framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO) reconstruction algorithm equipped with several Riemann solvers, and (ii) a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.
Reference Key |
maulik2017fluidsresolution
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Romit Maulik;Omer San |
Journal | journal of electrical and computer engineering |
Year | 2017 |
DOI | 10.3390/fluids2020014 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.