A watershed-scale model for depressional wetland-rich landscapes.
Clicks: 197
ID: 16156
2018
Wetlands are often dominant features in low relief, depressional landscapes and provide an array of hydrologically driven ecosystem services. However, contemporary models do not adequately represent the role of spatially distributed wetlands in watershed-scale water storage and flows. Such tools are critical to better understand wetland hydrological, biogeochemical, and biological functions and predict management and policy outcomes at varying spatial scales. To develop a new approach for simulating depressional landscapes, we modified the Soil and Water Assessment Tool (SWAT) model to incorporate improved representations of depressional wetland structure and hydrological processes. Specifically, we refined the model to incorporate: (1) water storage capacity and surface flowpaths of individual wetlands and (2) local wetland surface and subsurface exchange. We utilized this model, termed SWAT-DSF (DSF for Depressional Storage and Flows), to simulate the ~289 km Greensboro watershed within the Delmarva Peninsula of the US Coastal Plain. Model calibration and verification used both daily streamflow observations and remotely sensed surface water extent data (ca. 2-week temporal resolution), allowing us to assess model performance with respect to both streamflow and watershed inundation patterns. Our findings demonstrate that SWAT-DSF can successfully replicate distributed wetland processes and resultant watershed-scale hydrology. SWAT-DSF provides improved temporal and spatial characterization of watershed-scale water storage and flows in depressional landscapes, providing a new tool to quantify wetland functions at broad spatial scales.
Reference Key |
evenson2018ajournal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Evenson, Grey R;Jones, C Nathan;McLaughlin, Daniel L;Golden, Heather E;Lane, Charles R;DeVries, Ben;Alexander, Laurie C;Lang, Megan W;McCarty, Gregory W;Sharifi, Amirreza; |
Journal | journal of hydrology: x |
Year | 2018 |
DOI | 100002 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.