nitrous oxide dynamics in low oxygen regions of the pacific: insights from the memento database

Clicks: 135
ID: 162252
2012
The eastern tropical Pacific (ETP) is believed to be one of the largest marine sources of the greenhouse gas nitrous oxide (N<sub>2</sub>O). Future N<sub>2</sub>O emissions from the ETP are highly uncertain because oxygen minimum zones are expected to expand, affecting both regional production and consumption of N<sub>2</sub>O. Here we assess three primary uncertainties in how N<sub>2</sub>O may respond to changing O<sub>2</sub> levels: (1) the relationship between N<sub>2</sub>O production and O<sub>2</sub> (is it linear or exponential at low O<sub>2</sub> concentrations?), (2) the cutoff point at which net N<sub>2</sub>O production switches to net N<sub>2</sub>O consumption (uncertainties in this parameterisation can lead to differences in model ETP N<sub>2</sub>O concentrations of more than 20%), and (3) the rate of net N<sub>2</sub>O consumption at low O<sub>2</sub>. Based on the MEMENTO database, which is the largest N<sub>2</sub>O dataset currently available, we find that N<sub>2</sub>O production in the ETP increases linearly rather than exponentially with decreasing O<sub>2</sub>. Additionally, net N<sub>2</sub>O consumption switches to net N<sub>2</sub>O production at ~ 10 μM O<sub>2</sub>, a value in line with recent studies that suggest consumption occurs on a larger scale than previously thought. N<sub>2</sub>O consumption is on the order of 0.01–1 mmol N<sub>2</sub>O m<sup>−3</sup> yr<sup>−1</sup> in the Peru-Chile Undercurrent. Based on these findings, it appears that recent studies substantially overestimated N<sub>2</sub>O production in the ETP. In light of expected deoxygenation and the higher than previously expected point at which net N<sub>2</sub>O production switches to consumption, there is enough uncertainty in future N<sub>2</sub>O production that even the sign of future changes is still unclear.
Reference Key
zamora2012biogeosciencesnitrous Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;L. M. Zamora;A. Oschlies;H. W. Bange;K. B. Huebert;J. D. Craig;A. Kock;C. R. Löscher
Journal tetrahedron letters
Year 2012
DOI 10.5194/bg-9-5007-2012
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.