information theoretic-based interpretation of a deep neural network approach in diagnosing psychogenic non-epileptic seizures
Clicks: 197
ID: 182229
2018
The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a classification stage trained by supervised learning. After fine-tuning, the deep network is able to discriminate well the class of patients from controls with around 90% sensitivity and specificity. This deep model gives better classification performance than some other standard discriminative learning algorithms. As in clinical problems there is a need for explaining decisions, an effort has been carried out to qualitatively justify the classification results. The main novelty of this paper is indeed to give an entropic interpretation of how the deep scheme works and reach the final decision.
Reference Key |
gasparini2018entropyinformation
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Sara Gasparini;Maurizio Campolo;Cosimo Ieracitano;Nadia Mammone;Edoardo Ferlazzo;Chiara Sueri;Giovanbattista Gaspare Tripodi;Umberto Aguglia;Francesco Carlo Morabito |
Journal | European journal of medicinal chemistry |
Year | 2018 |
DOI | 10.3390/e20020043 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.