antihypertensive effect of korean red ginseng by enrichment of ginsenoside rg3 and arginine–fructose

Clicks: 228
ID: 185189
2016
Background: Ginsenoside Rg3 and arginine–fructose (Arg-Fru) are known as the hypotensive compounds of Panax ginseng; however, their efficacy on antihypertension has not been reported yet to our best knowledge. Thus, hypotensive components-enriched fraction of red ginseng (HCEF-RG) was prepared from fine root concentrate (FR) and their antihypertensive effects were investigated in spontaneously hypertensive rats (SHR). Methods: Male SHRs were divided into six groups: control (Wistar Kyoto, SHR); FR 500; FR 1,000; HCEF-RG 500; and HCEF-RG 1,000; samples (mg/kg body weight) were orally administered every day for 8 wk. Blood pressure was monitored at 1 wk, 2 wk, 3 wk, 4 wk, 6 wk, and 8 wk by tail cuff method. At 8 wk after samples administration, mice were killed for the measurement of renin activity (RA), angiotensin-I converting enzyme inhibition, angiotensin II, and nitric oxide (NO) levels in plasma. Results: HCEF-RG with four-fold more Rg3 and 24-fold more Arg-Fru contents was successfully prepared from reacted mixtures of FR and persimmon vinegar (12 times against FR, v/v) at 80°C for 18 h. Both FR 1,000 and HCEF-RG 1,000 showed lowered systolic blood pressure than SHR control group and HCEF-RG 1,000 group exhibited a significant decrease in diastolic blood pressure. RA was significantly lowered in all treated groups, while angiotensin II did not affect by FR and HCEF-RG treatment. However, angiotensin-I converting enzyme inhibition and NO in FR 1,000 and HCEF-RG 1,000 were significantly increased compared with SHR control group. Conclusion: HCEF-RG is more effective and useful for alleviating hypertension than FR, implying the health benefit of Rg3 and Arg-Fru.
Reference Key
lee2016journalantihypertensive Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Kyung Hee Lee;In Young Bae;Song I. Park;Jong-Dae Park;Hyeon Gyu Lee
Journal advances in high energy physics
Year 2016
DOI 10.1016/j.jgr.2015.08.002
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.