Multicatalysis Combining 3D-Printed Devices and Magnetic Nanoparticles in One-Pot Reactions: Steps Forward in Compartmentation and Recyclability of Catalysts.
Clicks: 349
ID: 1859
2019
A tricatalytic compartmentalized system that immobilizes metallic species to perform one-pot sequential functionalization is described: a three-dimensional (3D)-printed palladium monolith, ferritic copper(I) magnetic nanoparticles, and a 3D-printed polypropylene capsule-containing copper(II) loaded onto polystyrene-supported 1,5,7-triazabicyclo[4.4.0]dec-5-ene (PS-TBD) allowed the rapid synthesis of diverse substituted 1-([1,1'-biphenyl]-4-yl)-1 H-1,2,3-triazoles. The procedure is based on the Chan-Lam azidation/copper alkyne-azide cycloaddition/Suzuki reaction strategy in the solution phase. This catalytic system enabled the efficient assembly of the final compounds in high yields without the need for special additives or intermediate isolation. The monolithic catalyst-containing immobilized palladium species was synthesized by surface chemical modification of a 3D-printed silica monolith using a soluble polyimide resin as a key reagent, thus creating an extremely robust composite. All three immobilized catalysts described here were easily recovered and reused in numerous cycles. This work exemplifies the role of 3D printing in the design and manufacture of devices for compartmented multicatalytic systems to carry out complex one-pot transformations.
Reference Key |
sanchez-dazmarta2019multicatalysisacs
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Sanchez Díaz-Marta, Antonio;Yáñez, Susana;Tubío, Carmen R;Barrio, V Laura;Piñeiro, Yolanda;Pedrido, Rosa;Rivas, José;Amorín, Manuel;Guitián, Francisco;Coelho, Alberto; |
Journal | ACS applied materials & interfaces |
Year | 2019 |
DOI | 10.1021/acsami.9b08119 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.