doubling bifurcation of a closed invariant curve in 3d maps
Clicks: 140
ID: 189546
2012
The object of the present paper is to give a qualitative description of the bifurcation mechanisms associated with a closed invariant curve in three-dimensional maps, leading to its doubling, not related to a standard doubling of tori. We propose an explanation on how a closed invariant attracting curve, born via Neimark-Sacker bifurcation, can be transformed into a repelling one giving birth to a new attracting closed invariant curve which has doubled loops.
L’objet de ce papier est de donner une description qualitative des mécanismes de bifurcation associés avec une courbe fermée invariante pour des applications en dimension trois, conduisant à son doublement, et différent du doublement standard de tores. Nous proposons une explication du fait qu’une courbe fermée invariante attractive, née d’une bifurcation de Neimark-Sacker, peut se transformer en une courve répulsive donnant naissance à une nouvelle courbe fermée invariante attractive avec boucles doublées.
L’objet de ce papier est de donner une description qualitative des mécanismes de bifurcation associés avec une courbe fermée invariante pour des applications en dimension trois, conduisant à son doublement, et différent du doublement standard de tores. Nous proposons une explication du fait qu’une courbe fermée invariante attractive, née d’une bifurcation de Neimark-Sacker, peut se transformer en une courve répulsive donnant naissance à une nouvelle courbe fermée invariante attractive avec boucles doublées.
Reference Key |
iryna2012esaim:doubling
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | ;Sushko Iryna;Gardini Laura |
Journal | games for health journal |
Year | 2012 |
DOI | 10.1051/proc/201236014 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.