effect of chlorhexidine on the bond strength of a self-etch adhesive system to sound and demineralized dentin

Clicks: 170
ID: 237154
2013
This study evaluated the effect of a 2% chlorhexidine-based disinfectant (CHX) on the short-term resin-dentin bond strength of a self-etch adhesive system to human dentin with different mineral contents. Dentinal mineralization was tested at 4 levels (sound, and after 2, 4, or 8 days of demineralization-remineralization cycles) and disinfectant at 2 levels [deionized water (DW, negative control) and CHX]. Dentin demineralization induced by pH-cycling was characterized by cross-sectional hardness (CSH). Each dentin surface was divided into halves, one treated with DW and the other with CHX (5 minutes). Each surface was bonded with a self-etch adhesive system and restored. The specimens were sectioned and subjected to microtensile bond testing. CSH and microtensile bond strength (µTBS) data were analyzed by regression analysis and ANOVA-Tukey tests (α = 5%), respectively. The groups treated with CHX resulted in mean µTBS similar to those found for the groups in which the dentin was exposed to DW (p = 0.821). However, mean µTBS were strongly influenced by dentin mineralization (p < 0.05): the bond strength found for sound dentin was lower than that found for dentin cycled for 8 days, which was even lower than the bond strengths for dentin cycled for 2 or 4 days. The results suggest that the degree of dentin demineralization affects the bond strength of self-etching adhesives, but the use of CHX does not modify this effect.
Reference Key
de-melo2013brazilianeffect Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Mary Anne Sampaio de-Melo;Diego da Costa Goes;Maria Denise Rodrigues de-Moraes;Sérgio Lima Santiago;Lidiany Karla Azevedo Rodrigues
Journal journal of information and computational science
Year 2013
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.