Doping of Tetraalkylammonium Salts in Polyethylenimine Ethoxylated for Efficient Electron Injection Layers in Solution-Processed Organic Light-Emitting Devices.
Clicks: 276
ID: 2386
2019
For efficient electron injection, a method to control the work functions (WFs) of ZnO electrodes in organic light-emitting devices (OLEDs) is reported in this study. First, ZnO was modified by doping of tetraalkylammonium salts (TRAX) into polyethylenimine ethoxylated (PEIE) for the WF control. Tetrabutylammonium salts (TBAX), where X = chloride, bromide, iodide, acetate, thiocyanate, and tetrafluoroborate anions, were doped into PEIE. A WF of nondoped PEIE-modified ZnO was 3.65 eV, whereas TBAX-doped PEIE-modified ZnO exhibited WFs ranging from 3.52 to 3.00 eV depending on the anion. TBAX salts exhibited different electron-donating capabilities depending on the anion, and the doping of TBAX with a large electron-donating capability exhibited a large WF reduction effect. In addition, tetraethyl- and tetrahexylammonium chlorides were doped into PEIE. PEIE doped with TRACl containing long alkyl chains exhibited a large WF reduction effect due to its low electron-accepting capabilities. In addition, the WF reduction mechanism was considered by the depth direction analysis of the PEIE:TBAX films. Finally, the ZnO/PEIE:TRAX bilayers were applied as electron injection layers in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] emissive-layer-based OLEDs with an inverted structure. The ZnO/PEIE:TBAX devices with low WFs exhibited low driving voltages.
Reference Key |
ohisa2019dopingacs
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Ohisa, Satoru;Suzuki, Michinori;Chiba, Takayuki;Kido, Junji; |
Journal | ACS applied materials & interfaces |
Year | 2019 |
DOI | 10.1021/acsami.9b06895 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.