a connectionist approach to embodied conceptual metaphor

Clicks: 155
ID: 257544
2010
A growing body of data has been gathered in support of the view that the mind is embodied and that cognition is grounded in sensory-motor processes. Some researchers have gone so far as to claim that this paradigm poses a serious challenge to central tenets of cognitive science, including the widely held view that the mind can be analyzed in terms of abstract computational principles. On the other hand, computational approaches to the study of mind have led to the development of specific models that help researchers understand complex cognitive processes at a level of detail that theories of embodied cognition (EC) have sometimes lacked. Here we make the case that connectionist architectures in particular can illuminate many surprising results from the EC literature. These models can learn the statistical structure in their environments, providing an ideal framework for understanding how simple sensory-motor mechanisms could give rise to higher-level cognitive behavior over the course of learning. Crucially, they form overlapping, distributed representations, which have exactly the properties required by many embodied accounts of cognition. We illustrate this idea by extending an existing connectionist model of semantic cognition in order to simulate findings from the embodied conceptual metaphor literature. Specifically, we explore how the abstract domain of time may be structured by concrete experience with space (including experience with culturally-specific spatial and linguistic cues). We suggest that both EC researchers and connectionist modelers can benefit from an integrated approach to understanding these models and the empirical findings they seek to explain.
Reference Key
flusberg2010frontiersa Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors ;Stephen J Flusberg;Paul H Thibodeau;Daniel A Sternberg;Jeremy J Glick
Journal accounts of chemical research
Year 2010
DOI 10.3389/fpsyg.2010.00197
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.