Synthesis, characterization, solid-state structures, and spectroscopic properties of two catechol-based luminescent chemosensors for biologically relevant oxometalates.

Clicks: 210
ID: 2666
2007
The new heteroditopic ligand 2,3-dihydroxy-N-(1,10-phenanthroline-5-yl)benzamide (H2-L3) was synthesized and coordinated to [Ru(bpy)2(phen)]2+- and [ReBr(CO)3(phen)]-type luminophores (bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline). The resulting chemosensors [Ru(bpy)2(H2-L3)]2+ and [ReBr(CO)3(H2-L3)] were fully characterized and their solid-state structures and spectroscopic properties were investigated to assess how the photophysical properties of the luminescent signaling units affect the performance of the sensors. [Ru(bpy)2(H2-L3)]2+ and [ReBr(CO)3(H2-L3)] both signal the presence and concentration of molybdate and vanadate in aqueous acetonitrile through a decrease in emission intensity. [ReBr(CO)3(H2-L3)] also detects tungstate. Due to the higher emission intensity of the Ru-based sensor, its detection limits for molybdate (43 microg L(-1)) and vanadate (24 microg L(-1)) are almost 1 order of magnitude lower than the ones achieved with the Re-based sensor. The optimum working pH of the chemosensors is determined by the pKa values of the 2-hydroxy-groups of the receptor units: pH 4 for [ReBr(CO)3(H2-L3)] and pH 3 for [Ru(bpy)2(H2-L3)]2+. Both sensors are selective: equimolar amounts of PO4(3-), SO4(2-), ReO4-, Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) do not interfere with the detection of molybdate or vanadate.
Reference Key
batey2007synthesisinorganic Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Batey, Helen D;Whitwood, Adrian C;Duhme-Klair, Anne-K;
Journal Inorganic chemistry
Year 2007
DOI DOI not found
URL URL not found
Keywords Keywords not found

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.