Low-Cost and High-Throughput Testing of COVID-19 Viruses and Antibodies via Compressed Sensing: System Concepts and Computational Experiments

Clicks: 7
ID: 282372
2020
Coronavirus disease 2019 (COVID-19) is an ongoing pandemic infectious disease outbreak that has significantly harmed and threatened the health and lives of millions or even billions of people. COVID-19 has also negatively impacted the social and economic activities of many countries significantly. With no approved vaccine available at this moment, extensive testing of COVID-19 viruses in people are essential for disease diagnosis, virus spread confinement, contact tracing, and determining right conditions for people to return to normal economic activities. Identifying people who have antibodies for COVID-19 can also help select persons who are suitable for undertaking certain essential activities or returning to workforce. However, the throughputs of current testing technologies for COVID-19 viruses and antibodies are often quite limited, which are not sufficient for dealing with COVID-19 viruses' anticipated fast oscillating waves of spread affecting a significant portion of the earth's population. In this paper, we propose to use compressed sensing (group testing can be seen as a special case of compressed sensing when it is applied to COVID-19 detection) to achieve high-throughput rapid testing of COVID-19 viruses and antibodies, which can potentially provide tens or even more folds of speedup compared with current testing technologies. The proposed compressed sensing system for high-throughput testing can utilize expander graph based compressed sensing matrices developed by us \cite{Weiyuexpander2007}.
Reference Key
xu2020lowcost Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Jirong Yi; Raghu Mudumbai; Weiyu Xu
Journal arXiv
Year 2020
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.