MicroRNA-365 functions as a mechanosensitive microRNA to inhibit end plate chondrocyte degeneration by targeting histone deacetylase 4.
Clicks: 297
ID: 29685
2019
End plate chondrocyte degeneration is a major cause of intervertebral disc degeneration. Mechanical biophysical forces, including intermittent cyclic mechanical tension (ICMT), exacerbate end plate chondrocyte degeneration. However, the underlying molecular mechanism of mechanical stretch-induced end plate chondrocyte degeneration is still unclear. This study sought to determine whether microRNAs (miRNAs) respond to mechanical stretch and play a role in regulating mechanically-induced end plate chondrocyte degeneration. We identified miR-365 as a mechanoresponsive miRNA in primary human end plate chondrocytes after ICMT application by miRNA microarray analysis. The expression of miR-365 was down-regulated in the disc samples obtained from patients with disc degeneration. We also found that the miR-365 stimulates chondrocyte proliferation but does not promote end plate chondrocyte death. Using bioinformatic analyses and subsequent confirmation by real-time RT-PCR, we identified multiple candidate target genes of miR-365 that responded to in vitro mechanical stimulation; among them, HDAC4 was fully characterized. Mutation of putative miR-365 binding sites in HDAC4 mRNA abolished miR-365 mediated repression of HDAC4 3'-untranslated region (3'UTR) luciferase reporter activity, suggesting that miR-365 binds to the HDAC4 3'UTR. Overexpression of miR-365 significantly decreased the HDAC4 protein level, suggesting that miR-365 acts as an endogenous attenuator of HDAC4 in human end plate chondrocytes. Further, perturbation of miR-365 expression also had a significant effect on the expression of COL2A and ACAN and on matrix degeneration. Overexpression of HDAC4 abolished miR-365 rescued end plate chondrocyte degeneration during ICMT application. Furthermore, we found that the wnt/β-catenin signal pathway was related to HDAC4 and promoted end plate chondrocyte degeneration. Overall, our results suggest that miR-365 is a mechanosensitive miRNA that regulates human chondrocyte degeneration by directly targeting HDAC4. We propose that therapeutic regulation of miR-365 may be an efficient anabolic strategy for inhibiting end plate chondrocyte degeneration.
Reference Key |
zheng2019microrna365bone
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Zheng, Quan;Li, Xing-Xing;Xiao, Liang;Shao, Song;Jiang, Huai;Zhang, Xiao-Ling;Sun, Liang-Ye;Xu, Hong-Guang; |
Journal | bone |
Year | 2019 |
DOI | S8756-3282(19)30342-4 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.