Diffuse microdamage in bone activates anabolic response by osteoblasts via involvement of voltage-gated calcium channels.
Clicks: 183
ID: 40341
2019
Matrix damage sustained by bone tissue is repaired by the concerted action of bone cells. Previous studies have reported extracellular calcium ([Ca]) efflux to originate from regions of bone undergoing diffuse microdamage termed as "diffuse microdamage-induced calcium efflux" (DMICE). DMICE has also been shown to activate and increase intracellular calcium ([Ca]) signaling in osteoblasts via the involvement of voltage-gated calcium channels (VGCC). Past studies have assessed early stage (< 1 h) responses of osteoblasts to DMICE. The current study tested the hypothesis that DMICE has longer-term sustained effect such that it induces anabolic response of osteoblasts.Osteoblasts derived from mouse calvariae were seeded on devitalized bovine bone wafers. Localized diffuse damage was induced in the vicinity of cells by bending. The response of osteoblasts to DMICE was evaluated by testing gene expression, protein synthesis and mineralized nodule formation.Cells on damaged bone wafers showed a significant increase in RUNX2 and Osterix expression compared to non-loaded control. Also, RUNX2 and Osterix expression were suppressed significantly when the cells were treated with bepridil, a non-selective VGCC inhibitor, prior to loading. Significantly higher amounts of osteocalcin and mineralized nodules were synthesized by osteoblasts on diffuse damaged bone wafers, while bepridil treatment resulted in a significant decrease in osteocalcin production and mineralized nodule formation.In conclusion, this study demonstrated that DMICE activates anabolic responses of osteoblasts through activation of VGCC. Future studies of osteoblast response to DMICE in vivo will help to clarify how bone cells repair diffuse microdamage.
Reference Key |
jung2019diffusejournal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Jung, Hyungjin;Akkus, Ozan; |
Journal | journal of bone and mineral metabolism |
Year | 2019 |
DOI | 10.1007/s00774-019-01042-8 |
URL | |
Keywords | Keywords not found |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.