Adversarial Feature Alignment: Avoid Catastrophic Forgetting in Incremental Task Lifelong Learning.

Clicks: 220
ID: 46646
2019
Humans are able to master a variety of knowledge and skills with ongoing learning. By contrast, dramatic performance degradation is observed when new tasks are added to an existing neural network model. This phenomenon, termed , is one of the major roadblocks that prevent deep neural networks from achieving human-level artificial intelligence. Several research efforts (e.g., lifelong or continual learning algorithms) have proposed to tackle this problem. However, they either suffer from an accumulating drop in performance as the task sequence grows longer, or require storing an excessive number of model parameters for historical memory, or cannot obtain competitive performance on the new tasks. In this letter, we focus on the incremental multitask image classification scenario. Inspired by the learning process of students, who usually decompose complex tasks into easier goals, we propose an adversarial feature alignment method to avoid catastrophic forgetting. In our design, both the low-level visual features and high-level semantic features serve as soft targets and guide the training process in multiple stages, which provide sufficient supervised information of the old tasks and help to reduce forgetting. Due to the knowledge distillation and regularization phenomena, the proposed method gains even better performance than fine-tuning on the new tasks, which makes it stand out from other methods. Extensive experiments in several typical lifelong learning scenarios demonstrate that our method outperforms the state-of-the-art methods in both accuracy on new tasks and performance preservation on old tasks.
Reference Key
yao2019adversarialneural Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Yao, Xin;Huang, Tianchi;Wu, Chenglei;Zhang, Ruixiao;Sun, Lifeng;
Journal neural computation
Year 2019
DOI 10.1162/neco_a_01232
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.