In Situ Vapor Polymerization of Poly(3,4-ethylenedioxythiophene) Coated SnO2-Fe2O3 Continuous Electrospun Nanotubes for Rapid Detection of Iodide Ions

Clicks: 417
ID: 60125
2018
In this work poly(3,4-ethylenedioxythiophene) (PEDOT) coated SnO2-Fe2O3 continuous nanotubes with a uniform core⁻shell structure have been demonstrated for rapid sensitive detection of iodide ions. The SnO2-Fe2O3 nanotubes were firstly fabricated via an electrospinning technique and following calcination process. An in situ polymerization approach was then performed to coat a uniform PEDOT shell on the surface of as-prepared SnO2-Fe2O3 nanotubes by vapor phase polymerization, using Fe2O3 on the surface of nanotubes as an oxidant in an acidic condition. The resultant PEDOT@SnO2-Fe2O3 core-shell nanotubes exhibit a fast response time (~4 s) toward iodide ion detection and a linear current response ranging from 10 to 100 μM, with a detection limit of 1.5 μM and sensitivity of 70 μA/mM/cm2. The facile fabrication process and high sensing performance of this study can promote a wide range of potential applications in human health monitoring and biosensing systems.
Reference Key
xu2018inmaterials Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Xu, Xiuru;Wang, Wei;Sun, Bolun;Zhang, Xue;Zhao, Rui;Wang, Ce;
Journal materials
Year 2018
DOI DOI not found
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.