Virtual Materials Intelligence for Design and Discovery of Advanced Electrocatalysts.
Clicks: 217
ID: 63310
2019
Similar to the advancements gained from big data in genomics, security, internet of things, and e-commerce, the materials workflow could be made more efficient and prolific through advances in streamlining data sources, autonomous materials synthesis, rapid characterization, big data analytics, and self-learning algorithms. In electrochemical materials science, data sets are large, unstructured/heterogeneous, and difficult to process and analyze from a single data channel or platform. Computer-aided materials design together with advances in data mining, machine learning, and predictive analytics are touted to provide inexpensive and accelerated pathways towards tailor-made functionally optimized energy materials. Fundamental research in the field of electrochemical energy materials focuses primarily on complex interfacial phenomena and kinetic electrocatalytic processes. This perspective article critically ranks existing AI-driven modeling and computational approaches that are currently applied to those objects. An application-driven materials intelligence platform is also introduced, and its functionalities are scrutinized considering the development of electrocatalyst materials for CO2 conversion as a use case.
Reference Key |
malek2019virtualchemphyschem
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Malek, Kourosh;Malek, Ali;Eslamibidgoli, Mohammad Javad;Mokhtari, Mehrdad;Wang, Qianpu;Eikerling, Michael H; |
Journal | Chemphyschem : a European journal of chemical physics and physical chemistry |
Year | 2019 |
DOI | 10.1002/cphc.201900570 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.