A Scoring Algorithm for the Automated Analysis of Glycosaminoglycan MS/MS Data.
Clicks: 174
ID: 64398
2019
The role of glycosaminoglycans (GAGs) in major biological functions is numerous and diverse, yet structural characterization of them by mass spectrometric techniques proves to be challenging. Characterization of GAG structure from tandem mass spectrometry is a tedious and time-consuming process but one that can be automated in a database-independent, high-throughput fashion through the assistance of software implementing a genetic algorithm (J. Am. Soc. Mass Spectrom. 29, 1802-1911, 2018). This work presents the manner in which this data is interpreted by the software, specifically addressing the development of a scoring algorithm. The significance of glycosidic and cross-ring fragment ions and the implications that specific fragments provide for assigning the positions of modifications are discussed. The scoring algorithm is tested for statistical merit using the widely accepted expectation value as the criterion for quality. Using MS/MS data for well-characterized standards, this scoring approach is shown to assign the correct structure, with a low likelihood (1 in 10 chances) that the assigned structure matches the data due to random chance. The integrated software that automates the structure assignment is called Glycosaminoglycan-Unambiguous Identification Technology (G-UNIT).
Reference Key |
duan2019ajournal
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Duan, Jiana;Pepi, Lauren;Amster, I Jonathan; |
Journal | journal of the american society for mass spectrometry |
Year | 2019 |
DOI | 10.1007/s13361-019-02338-9 |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.