Normal form of particle motion under the influence of an ac dipole
Clicks: 213
ID: 72189
2002
ac dipoles in accelerators are used to excite coherent betatron oscillations at a drive frequency close to the tune. These beam oscillations may last arbitrarily long and, in principle, there is no significant emittance growth if the ac dipole is adiabatically turned on and off. Therefore the ac dipole seems to be an adequate tool for nonlinear diagnostics provided the particle motion is well described in the presence of the ac dipole and nonlinearities. Normal forms and Lie algebra are powerful tools to study the nonlinear content of an accelerator lattice. In this article a way to obtain the normal form of the Hamiltonian of an accelerator with an ac dipole is described. The particle motion to first order in the nonlinearities is derived using Lie algebra techniques. The dependence of the Hamiltonian terms on the longitudinal coordinate is studied showing that they vary differently depending on the ac dipole parameters. The relation is given between the lines of the Fourier spectrum of the turn-by-turn motion and the Hamiltonian terms.
Reference Key |
tomas2002normalphysical
Use this key to autocite in the manuscript while using
SciMatic Manuscript Manager or Thesis Manager
|
---|---|
Authors | Tomás, R.; |
Journal | physical review special topics accelerators and beams |
Year | 2002 |
DOI | DOI not found |
URL | |
Keywords |
Citations
No citations found. To add a citation, contact the admin at info@scimatic.org
Comments
No comments yet. Be the first to comment on this article.