Suppression of abnormal grain growth in KNaNbO: phase transitions and compatibility.

Clicks: 236
ID: 72284
2019
This work presents the suppression of abnormal grain growth in bulk ceramic KNaNbO (KNN). The suppression is enabled by precise control of the starting powder morphology through match of milling and calcination duration. A comparative temperature-dependent analysis of the resulting sample morphology, phase transitions and related electronic material properties reveals that abnormal grain growth is indeed a major influence in material property deterioration, as has theoretically been suggested in other works. However, it is shown that this abnormal grain growth originates from the calcined powder and not from sintering and that all subsequent steps mirror the initial powder morphology. In specific, the results are discussed with respect to the predictions of the compatibility theory and microstructure. Despite the material's multi-scale heterogeneity, the suppression of abnormal grain growth allows for the achievement of significantly improved functional properties and it is reported that this development is correctly predicted by the compatibility theory within the borders of microstructural integrity. It could be demonstrated that functional fatigue is strongly minimised, while thermal and electronic properties are improved when abnormal grain growth is suppressed by powder morphology control.
Reference Key
popghe2019suppressionscientific Use this key to autocite in the manuscript while using SciMatic Manuscript Manager or Thesis Manager
Authors Pop-Ghe, Patricia;Stock, Norbert;Quandt, Eckhard;
Journal Scientific reports
Year 2019
DOI 10.1038/s41598-019-56389-9
URL
Keywords

Citations

No citations found. To add a citation, contact the admin at info@scimatic.org

No comments yet. Be the first to comment on this article.